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Abstract
We analyse the steady-state regime of a one-dimensional Ising model under
a tapping dynamics recently introduced by analogy with the dynamics of
mechanically perturbed granular media. The idea that the steady-state regime
may be described by a flat measure over metastable states of fixed energy is
tested by comparing various steady-state time-averaged quantities in extensive
numerical simulations with the corresponding ensemble averages computed
analytically with this flat measure. The agreement between the two averages is
excellent in all the cases examined, showing that a static approach is capable
of predicting certain measurable properties of the steady-state regime.

PACS numbers: 0520, 7510N, 8105R

1. Introduction

In complex systems such as granular media the energy available due to thermal fluctuations is
not sufficient to cause particle rearrangement, hence in the absence of external perturbations
the system is trapped in a metastable state. A granular medium may be shaken mechanically
and experiments reveal a steady-state regime defined by an asymptotic compactivity [1]. The
non-trivial behaviour of these systems, such as slow relaxation dynamics and hysteresis effects,
arises from the fact that such systems have an extensive entropy of metastable or blocked states.
A vertically tapped system of hard spheres tends to a random close packing [1], whereas a
horizontally shaken system crystallizes [2]; the stationary states obtained in these systems are
not theoretically understood at present. Edwards [3] has proposed that one may construct a
thermodynamics over metastable states in the same way as Boltzmann and Gibbs developed
over microstates; his hypothesis is that the equilibrium measure over these states, in gently
tapped systems, is flat over all blocked states satisfying the relevant macroscopic constraints.
Recently this scenario has been put to the test in [4], where the authors examine a form of tapping
dynamics on two systems having an extensive entropy of metastable or blocked configurations,
the Kob–Anderson model [5] and the random field Ising model in three dimensions. They
then compared the time-averaged quantities obtained in the late-time aging regime with those
generated by a flat Edwards measure numerically calculated over blocked configurations of the
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system. While the Edwards measure worked well for the Kob–Anderson model it was shown
to be incorrect for the random field Ising model in three dimensions. Hence, though it is not
generically true, there appear to be systems where the flat measure works. The development of
a thermodynamics for such systems is important to understand the behaviour of granular media,
powders and glasses, and has far-reaching fundamental physical and practical applications. Let
us add that method of simulated annealing, where an analogy with classical thermodynamics
is used for optimization problems, is one of the most robust general methods of optimization
used in science and industry; it is possible that tapping type algorithms are more efficient in
certain circumstances (see e.g. [6]) and thus the general theory we are searching for should
clearly have applications well beyond physics.

Recently tapping dynamics has been introduced on simple spin systems in order to
draw analogies with the physics of granular media. These spin systems are spin glasses
and ferromagnets on random thin graphs [7, 8] and the three-spin model with ferromagnetic
coupling on random hypergraphs [9]. In the p-spin spherical model a tapping-like dynamics has
been recently introduced using a time-dependent oscillating magnetic field [10]. Simulations
on hard-sphere systems with a similar tapping mechanism were also carried out in [11]. A
tapping dynamics on a one-dimensional lattice model with facilitated dynamics has been
studied in [12], in the limit of very weak tapping. The general picture emerging from these
studies and the experiment [1] is that the compactivity of the system is increased as the tapping
strength (the amplitude of the external perturbation) is reduced. However, in the horizontal
shaking experiments [2] this is not the case. The main reason for choosing the spin systems
studied in [7–9] is that they have an extensive entropy of metastable states [9, 13, 14]; that is
to say, the total number of metastable states NMS is given by

NMS ∼ exp(NsEdw) (1)

where sEdw is the total Edwards entropy per spin [3]. The definition of a metastable state
depends on the dynamics of the system, where we will define a metastable state to be a
configuration where no single spin flip reduces the energy of the system. In this Letter we
will examine the validity of the hypothesis of Edwards for the one-dimensional ferromagnet
under the tapping dynamics of [7, 8]. If one implements a zero-temperature single-spin-flip
dynamics such that only single spin flips lowering the energy are permitted, this system has an
extensive Edwards entropy and becomes stuck in metastable states. The dynamics is made to
evolve via tapping, that is to say each spin is flipped in parallel with probability p ∈ (0, 1/2].
The system is tapped after it becomes blocked in a metastable state and after the tap it relaxes
again under zero temperature or falling dynamics (by analogy with granular material in a
gravitational field). Here the quantity corresponding to the compactivity is the energy. If
one makes an analogy with granular media, this dynamics corresponds to a rapid relaxation
dynamics between taps, meaning that the tapping is characterized only by its strength, p, and
not by an additional timescale. This dynamics is therefore, in a sense, the simplest case of
realistic tapping. The Glauber dynamics of the one-dimensional Ising model can be solved
analytically [15] (at all temperatures); however, the falling dynamics defined here (in between
taps) does not seem amenable to analytic solution.

The tapping dynamics for this system leads after a sufficiently large number of taps to
a steady-state energy E(p), which is constant. This value of E(p) can be determined by a
mean-field theory [7, 8], which we suspect to be exact as it reproduces certain exact results
obtained combinatorially and also is in perfect agreement with the numerical simulations.
Here we present numerical simulations under tapping dynamics to measure quantities such as
correlation functions, distribution of domain lengths and energy fluctuations (corresponding
to a specific heat) and confront the results with exact calculations using the Edwards measure.
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By the Edwards hypothesis we assume that the stationary measure on the tapped systems
is

〈O〉Edw =
∑

C O exp (−β(p)H [C])

Z
(2)

where {C} is the ensemble of metastable configurations and

Z =
∫

dENMS(E) exp(−β(p)NE) (3)

as suggested in [3] and recently in [16]. Here NMS(E) is the number of metastable states with
energy per spinE and β(p) is a Lagrange multiplier fixing the energy of the system, which can
also be thought of as a canonical temperature arising from the tapping. Defining the Edwards
entropy at internal energy E, sEdw(E) = ln(NMS(E))/N , we find that the relation determining
β(p) (the inverse Edwards temperature) is

β(p) = ∂sEdw(E)

∂E

∣∣∣∣
E(p)

. (4)

It was shown in [7, 8] that E(p) is a monotonically decreasing function of p and from
the definition (4) and the calculation of sEdw(E) carried out in [13] one may calculate the
corresponding β(p) as a function of p, which is continuous and monotonically decreasing.
Hence p plays the role of an effective temperature which fixes the internal energy of the steady
state.

This does not prove that the Edwards measure is correct for this system (the hypothesis of
Edwards does not tell us how to calculate β(p)); one now has to see whether the measure (2)
can be used to compute quantities in the steady-state regime. In this Letter we calculate using
the Edwards measure:

• The internal energy fluctuation per spin c = (〈E2〉− 〈E〉2)/N where E is the total internal
energy, and consequently 〈E〉 = NE.

• The correlation functions C(r) = 〈SiSi+r〉 and D(r) = 〈SiSi+1Si+rSi+r+1〉.
• The distribution of domain sizes.

The results are then compared with extensive numerical simulations.

2. Calculations using the Edwards measure

The Hamiltonian we consider is that for the usual one-dimensional ferromagnet with periodic
boundary conditions

H = −
N∑
i=1

SiSi+1. (5)

The partition function for the system is then given by

Z = Tr
N∏
i=1

exp(βSiSi+1)θ(Si−1Si + SiSi+1) (6)

where the function θ(x) = 0 for x < 0 and θ(x) = 1 for x � 0 enforces the metastability (each
spin is stable or marginally stable in its local field). Performing a local change of variables to
new Ising spins σi = SiSi+1 we obtain

Z = Tr
N∏
i=1

exp(βσi)θ(σi + σi+1). (7)
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Hence we find that Z = Tr T N where T is the transfer matrix

T =
(
a 1
1 0

)
(8)

with a = exp(β). From this we find that

E = a√
a2 + 4

(9)

which simply determines β. The fluctuations in the free energy are then seen to be given by

c = −E(1 − E2). (10)

The determination of the correlation function D(r) is simple as, in terms of the spins σi , one
has D(r) = 〈σiσi+r〉. Using the Edwards measure one obtains

D(r) = Tr σ̂ T r σ̂ T N−r

Z
(11)

where σ̂ is the matrix

σ̂ =
(

1 0
0 −1

)
. (12)

In the large-N limit one finds

D(r) = (〈t0|σ̂ |t0〉
)2

+

(
t1

t0

)r (〈t1|σ̂ |t1〉
)2

(13)

where t0 = (a +
√
a2 + 4)/2 is the maximal eigenvalue of T and t1 = −1/t0 the remaining

one, |t0〉 and |t1〉 denoting the respective normalized eigenvectors. Expressing everything in
terms of the energy per spin E we find that the connected part of D(r) is given by

Dc(r) = (1 − E2)

(
E + 1

E − 1

)r
. (14)

In the same way, one can calculate the two-point correlation function, finding

C(r) = Cc(r) = Tr (σ̂ T )rT N−r

Z
. (15)

The matrix σ̂ T can be trivially diagonalized: σ̂ T = PDP−1, with

P =
(
u 1
1 u

)
and D =

(
u 0
0 1/u

)
(16)

with u = (a +
√
a2 − 4)/2. This yields

C(r) = A

(
u

t0

)r
+ (1 − A)

(
1

ut0

)r
(17)

with

A = u2t2
0 − 1

(u2 − 1)(t2
0 + 1)

. (18)

Defining by P(r) the probability that a given domain has length r , it is easy to see that this is
given by

P(r) = 〈δσ1,−1δσ2,1 · · · δσr ,1δσr ,1δσr+1,−1〉
〈δσ1,−1〉 . (19)
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We find that

P(r) = 1

t2
0

(
a

t0

)r−2

r � 2

= 0 r < 2. (20)

Simplifying this yields

P(r) =
(

1 + E

1 − E

) ( −2E

1 − E

)r−2

= a(E) exp (−b(E)r) r � 2

= 0 r < 2. (21)

Hence, the distribution of domain sizes is geometric for n > 2, the fact that P(1) = 0 is a
consequence of metastability as a domain of length 1 would be a single spin surrounded by
two antiparallel neighbours, which is unstable.

3. Comparison with numerical simulations

One can compare the results of numerical simulations of tapping with the above theoretical
ones. For a given value of the energy, let us say E, we have tapped the system with a strength
p such that in the steady state E = E(p). The value of E(p) can be calculated [7, 8] and
we recall that E(p) is maximal for p = 1/2, where it takes the value −1 + e−1, and E(p) is
monotonically decreasing for p ∈ [0, 1/2] with limp→0+ E(p) = −1. The system is tapped a
sufficiently large number of times, say ts , to ensure that the average of the internal energy E(t)
measured becomes stationary. Once in this steady-state regime, the quantities of interest are
measured over a measurement time (number of taps) tm = 105. The systems were of size of
2 × 105 spins and the results were also averaged over Ns realizations. Hence, mathematically,
the average value of a quantity A is calculated, as one would in a Monte Carlo simulation of a
thermal system, as

〈A〉 = 1

Ns

Ns∑
i=1

1

tm

ts+tm∑
t=ts+1

Ai(t). (22)

In our simulations we found that, for the number of sites and tm used here, the results obtained
from averaging over several systems were identical to those obtained from measurements over
a single system. Hence the results are in the thermodynamic limit and the dependence on the
system size vanishes. Consequently the results presented here are from an average over a single
system of size 2×105 spins. In figure 1, we compare the fluctuation of the energy c calculated
using Edwards’ measure, as a function of E, against those obtained from the simulations: the
agreement is very good. For small values of p the error bars in our measurements are very
small and the agreement with equation (10) is excellent. For larger values of p the error bars
are large as the statistical fluctuations are larger; however, from figure 1 we see that the value
given by equation (10) is within the error bars. The distribution P(r) of domain sizes is shown
in figure 2 and has a perfect exponential decay for r � 2. This demonstrates that equation (21)
is in perfect agreement with the simulations (as the energy E is fixed) as shown in figure 3.

The correlation functions such as C(r) and D(r) have also been computed numerically.
In figure 4 we have plotted the results in comparison with those expected from equations (14)
and (17). Here again, the comparison is excellent (note that the agreement is better for low
energies, as again the statistical fluctuations due to the tapping are much smaller for low p

than for high p).
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Figure 1. The internal energy fluctuation c(E) versus E. The solid curve corresponds to the value
obtained from equation (10) and the symbols are the results obtained from tapping simulations
made on 5000 systems of 200 000 spins.
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Figure 2. Distribution of domain lengths from tapping simulations for p = 0.1. The vertical scale
is logarithmic. The slope is b = 0.165 ± 0.001, in excellent agreement with that obtained from
equation (21).

4. Conclusion

We have simulated numerically tapping dynamics on a one-dimensional system and measured
fluctuations of the energy, correlation functions and distributions of domain sizes. The values
of these quantities expected from a thermodynamics built by using a flat measure over blocked
configurations agree very well with our simulation data. The use of the flat measure therefore
allows one to accurately predict the two-point correlation function, a particular four-point
function D(r) and also a hierarchy of n-point functions (see equation (19)) corresponding to
the distribution of domain sizes P(r). In principle further quantities could be investigated
but the numerical study would be hampered by statistical fluctuations. The important point
here is that the principal quantities open to experimental determination are well predicted
from Edwards’ measure. A proof of the absolute validity of the use of the flat measure
seems difficult: there is no obvious form of detailed balance in the tapping dynamics and
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Figure 3. Slope of ln(P (r)), b(E) (as defined by equation (21)), with respect to the energy. The
solid curve corresponds to equation (21) and the symbols correspond to the same numerics as
figure 1.
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Figure 4. Comparison of the expected C(r) and D(r) from the theoretical calculation with the
results from numerical simulations for E = −0.78 (left) and E = −0.63 (right). The symbols
are the results of the tapping experiments and the solid curves correspond to those predicted by
equations (14) and (17).

one would need to show that at fixed internal energy per spin the system explores uniformly
the metastable states of this energy. Physically this seems quite likely in the limit of small
tapping. Here a metastable state can be viewed as a configuration of islolated domain walls.
The first-order O(p) effect of tapping creates domain wall diffusion and annihilation upon
the encounter of two domain walls as in the zero-temperature Glauber dynamics of the Ising
model [15, 17]. In addition within a domain the flipping of two consecutive spins creates
a domain of length 2 which then contributes the diffusion/annihilation process mentioned
previously; this process is, however, O(p2). Physically, the steady state is then reached upon
the equilibrium between the creation of small domains of this type within larger domains
and the annihilation of domains driven by diffusion. Hence, as the steady-state regime
is characterized by an average number of domain walls with the annihilation and creation
processes mentioned above in equilibrium, it seems plausible that the diffusion generated
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by the O(p) tapping enables the system to explore the configurations available in a flat
manner.

During this work we have benefited from useful and illuminating discussions with Jorge
Kurchan, Satya Majumdar and Erik Sorensen.
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